SurvLatent ODE : A Neural ODE based time-to-event model with competing risks for longitudinal data improves cancer-associated Venous Thromboembolism (VTE) prediction

Intae Moon^{1,2}, Stefan Groha^{3,4,5}, and Alexander Gusev^{3,4,5}

Motivation

- Many risk prediction tools rely on **simple, linear scoring system** using a small number of features.
- Learning from electronic health records (EHR) data for predicting clinical outcomes is challenging due to data irregularities such as i) **irregularly sampled measurements**, ii) loss to follow-up (i.e. right-censored), and iii) competing events

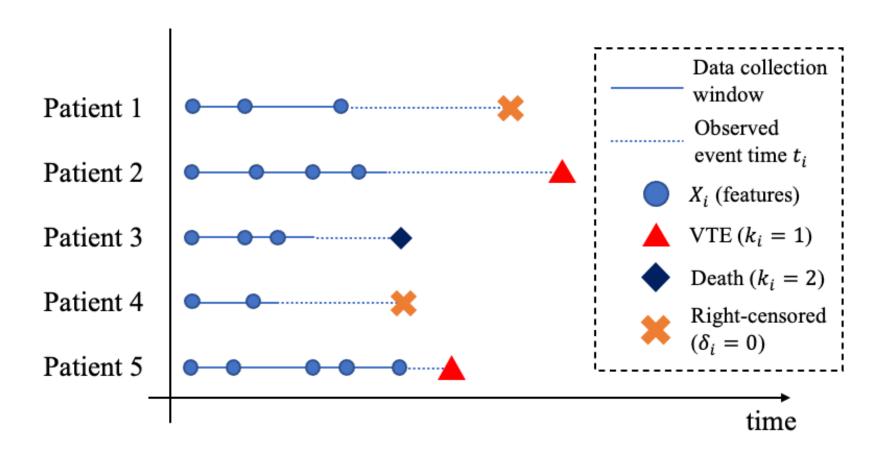


Fig. 1 : illustration of time-to-event data with time-varying features

Experimental results

Model comparison in terms of key strategies in handling longitudinal data

	Handles time-varying	Handles Competing	Handling missi Include missing	ing measurements Mean imputation/	Learning laten Exponential	t state dynamics Neural	Generative model (VAE)
	features	risks	pattern in input	forward-filling	decay	Networks	
SurvLatent ODE (Proposed model)	V	V	V			V	V
Surv RNN-VAE (Modified from Che et al. (2018))	V		V		V		V
RDSM (Nagpal et al., 2021)	V			V			
Dynamic-Deephit (Lee et al., 2020)	V	v	V				
$\begin{array}{c} \text{Cox } \text{PH}^1 \\ (\text{Cox, 1972}) \end{array}$				V			

Experient 1 (MIMIC-III data)

(I) SurvLatent ODE outperforms conventional as well as SOTA (stateof-the-art) time-to-event models for predicting time to mortality.

Time to hospital mortality prediction (MIMIC-III):

- Time-varying measurements of the first 36 hours of the admission
- $N_{train} = 11,950 (55\%), N_{valid} = 3,259 (15\%), N_{test} = 6,519 (30\%)$

	Tin	ne-dependent AU	C(t)		Brier Score, $BS(t)$	
	25th percentile	50th percentile	75th percentile	25th percentile	50th percentile	75th percentile
	(Hour 35)	(Hour 81)	(Hour 150)	(Hour 35)	(Hour 81)	(Hour 150)
SurvLatent ODE	0.920(0.009)	0.883(0.009)	0.831 (0.010)	0.0220 (0.0013)	0.0442 (0.0019)	0.0789(0.0029)
(Proposed model)	()	()	,	()	()	()
Surv RNN-VAE	$0.535 \ (0.022)^{**}$	$0.535 \ (0.016)^{**}$	$0.521 \ (0.014)^{**}$	$0.0281 (0.0017)^{**}$	$0.0571 \ (0.0023)^{**}$	$0.0950 \ (0.003)^{**}$
RDSM	$0.836 \ (0.017)^{**}$	$0.817 (0.013)^{**}$	$0.784 \ (0.011)^{**}$	$0.0241 (0.0018)^*$	0.0449(0.0023)	$0.0618 \ (0.0025)$
Dynamic-Deephit	$0.891 (0.009)^{**}$	$0.860 \ (0.009)^*$	$0.808 (0.010)^*$	$0.0247 (0.0018)^*$	$0.0492 (0.0024)^{**}$	0.0816(0.0032)
Cox PH	$0.826 \ (0.017)^{**}$	$0.806 \ (0.013)^{**}$	$0.762 \ (0.012)^{**}$	0.0234(0.0017)	$0.0465 \ (0.0023)$	0.0789(0.0032)
Dradiating time a t						

Predicting time to **hospital mortality**

Conclusion

First demonstration of the ODE-based variational autoencoder time-to-event model for longitudinal data, which

- Handles irregularly sampled data
- Handles **right-censored** patients
- Flexibly estimates hazard functions for the event of interest as well as **competing** events via a multi-task learning framework

Future work

- Extends to a multimodal framework which includes patient's tumor genetics data
- Well-calibrated uncertainty of time-to-event predictions as well as latent dynamics

